Fuzzy Varying Coefficient Bilinear Regression of Yield Series
نویسندگان
چکیده
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market.
منابع مشابه
NON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS
This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...
متن کاملReliability Analysis of Three Elements Series and Parallel Systems under Time-varying Fuzzy Failure Rate
Reliability is the most important performance issue in the engineering design process but in the real world problems, there are limitations for using the conventional reliability. Fuzzy logic has proved to be effective in expressing uncertainties in different fields, including reliability engineering. In this paper, For both the series and parallel systems composed of three identical or differe...
متن کاملRobust Fuzzy Varying Coefficient Regression Analysis with Crisp Inputs and Gaussian Fuzzy Output
This study presents a fuzzy varying coefficient regression model after deleting the outliers to improve the feasibility and effectiveness of the fuzzy regression model. The objective of our methodology is to allow the fuzzy regression coefficients to vary with a covariate, and simultaneously avoid the impact of data contaminated by outliers. In this paper, fuzzy regression coefficients are repr...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملL-FUZZY BILINEAR OPERATOR AND ITS CONTINUITY
The purpose of this paper is to introduce the concept of L-fuzzybilinear operators. We obtain a decomposition theorem for L-fuzzy bilinearoperators and then prove that a L-fuzzy bilinear operator is the same as apowerset operator for the variable-basis introduced by S.E.Rodabaugh (1991).Finally we discuss the continuity of L-fuzzy bilinear operators.
متن کامل